
TMemberCallback: A C++ Class to
Implement Member Callback Functions

Version 1.0

Introduction

Have you spent for ever trying to learn C++ really well? Have you spent forever
trying to program in Microsoftâ Windowsä really well? Have you always wondered
then why it is impossible to register a member function of a class as a Windows callback
function? The reason is that Windows, as object oriented as it may seem, was not
designed for C++. However, with this class that I provide, it is now possible to use C++
member functions as callback functions under Windows 3.1.

Suppose that you did want to call MakeProcInstance() with a C++ member
function. Well, first of all, you would have to cast the member function to a FARPROC.
Most compilers are wise enough not to let you do such a thing. Even if you could, and
even if you could continue as if it would work, the system would come to screeching halt
sooner or later. The reason is that each member function call requires a hidden
parameter: the hidden this pointer. Windows does not know about this hidden pointer.
What would be nice would be a way to tell MakeProcInstance() what the this pointer is.
That is exactly the service that this class provides.

What's Included

You are provided with the necessary items to get you started using the
TMemberCallback class. First is the MEMDLL.DLL file. This contains the class which
you will inherit from. The second is the MEMCALL.H file. This is the header file
which you will be needing for compile time. Third is the MEMDLL.LIB file which you
will need to link with. That's all you need, along with this documentation of course.

How it Works

The way this class works is through the beauty of inheritance. All that the user
needs to do is to inherit from the TMemberCallback class. With C++, all this requires is
the concatenation of the TMemberCallback class to the inheritance list of the class
declaration. The class then inherits a class specific version of the MakeProcInstance()
function which knows the hidden this pointer!

The class specific MakeProcInstance() function does exactly what the global

MakeProcInstance() does, and some. The global version of MakeProcInstance() merely
loads the ax register with the value of instance handle and then jumps to the FARPROC
it was provided. The class specific version does this but also makes sure that the this
pointer is put onto the stack for the member function that it then jumps to. That's it!
However, it is easier said than done.

How to Use the TMemberCallback Class

As mentioned previously, the user simply derives his or her class from the
TMemberCallback class. For instance if you had a class called TWindow as follows:

class TMyWindow : public TWindow

{
¼
}

You would simply have to add the TMemberCallback class to the
inheritance list as follows:

class TMyWindow : public TWindow, public TMemberCallback

{
¼
}

Then, at the appropriate time, the user would call the class specific
version of the MakeProcInstance() function. The function takes two
parameters, a CALLBACKPROC union and an HINSTANCE. The
function prototype is a follows:

FARPROC MakeProcInstance(CALLBACKPROC CallbackProc,
 HINSTANCE hInstance);

The purpose of the CALLBACKPROC union is so that the
function can take one parameter which may represent a pointer function to
any one of the callback types. Let us suppose that the user wants to
register a function TMyWindow::TimerProc as a member callback
function. The user wishes to create a one second timer. Then the user
would take the following action.

CALLBACKPROC CallbackProc;

CallbackProc.lpfnTimerProc = (LPFNTIMERPROC)
&TMyWindow::TimerProc;

lpfnTimerProc = MakeProcInstance(CallbackProc, hInstance);
SetTimer(NULL, NULL, 1000, lpfnTimerProc);

2

Note: The pointer to the member function that the programmer wishes to use as a
callback must be typecast into the corresponding pointer type. This is necessary in
order to convert the pointer into a TMemberCallback member function pointer.

The previous example conveys the main idea. The programmer may also want to
monitor the return value from MakeProcInstance() and make sure that it is not NULL. A
NULL return value indicates a memory allocation failure. To be complete, I have added
a class specific version of FreeProcInstance() also. The call to FreeProcInstance() is not
necessary since the class keeps track of the instance procedures and deletes them when
the class is destructed. However, it may be necessary for when a class derived from
TMemberCallback needs to manipulate callback functions often.

As one can see, it is very easy to use this class! Simply add the include file,
inherit from the class, and link with the required .LIB file, and voila!

Technical Aspects of the TMemberCallback Class

The idea is simple. For Windows to call a function as a callback function, it must
already know what the function "looks like." In other words, the parameters passed and
values returned must follow a strict template. This is the hard reality about using
callback functions. It is possible to trick the compiler at compile time and tell Windows
to call a function that does not match the template for the particular callback function.
However, it would most certainly cause an instant General Protection Fault which we all
know and love.

This very aspect is what causes C++ member functions to be invalid as Windows
callback functions. Because even if you declare them the way they must be declared,
there is still one oversight: The hidden this pointer. Windows does not know about it.
Therefore, even if you could trick the compiler into letting you use one as a callback, the
program would fail. Many people get around this road block by using static member
functions. I personally feel that this is a kludge. It also causes two problems. The first
is that the static member function is not passed a this pointer. The function does not
know the object which it works on, unless, of course, you pass it the pointer some way.
Another problem is that there can only be one callback routine for the whole set of
objects of that particular class due to the function being static.

A better way to do it is this. Why not trick Windows into thinking that it knows
about the hidden this pointer? This is relatively easy. When you call
MakeProcInstance(), you are usually using it before registering a callback function so
that the ds register will be properly set when the callback function is called. What it does
is create a code stub in memory which loads the ax register with the proper value and
then jumps to your callback. You then tell Windows to call the proc instance that you
just created instead of the actual function. Why not just take care of the hidden this
pointer at the same time? All the code stub would have to do is adjust the stack so that

3

the pointer would be on the stack when the stub jumped to the original proc instance
(which in our case would be a member function).

The TMemberCallback class provides you with a class specific version of
MakeProcInstance() and FreeProcInstance(). When you call this version of
MakeProcInstance(), it creates a code stub which adjusts the stack, loads the ax register,
and then jumps to the callback routine. You just register this code stub as the proc
instance with Windows! It's that simple.

Note: This function assumes that the hidden this pointer is a LONG pointer. This is usually nothing to
worry about. However, if there is a compiler switch which forces the compiler to use LONG
this pointers, I would suggest setting it accordingly.

The parameters that MakeProcInstance() takes are a CALLBACKPROC data type
and an HINSTANCE data type. The programmer must first declare a
CALLBACKPROC data type before registering the callback function. This is a union
which contains a function pointer. It is necessary to facilitate the casting of a member
function pointer to a regular function pointer. Normally compilers will not allow this,
but it must be done in order to create the code stub. The CALLBACKPROC data type
allows you to load it with any type of member callback function it knows about. The
header file should be examined in order to see if the appropriate callback function is
supported. If I have left one out, please contact me at the address at the end of this
manual. MakeProcInstance() returns a FARPROC which is what needs to be registered
with Windows.

Note: Remember to typecast the member function pointer using one of the given typecasts in the
header file. This is required in order to convert the pointer to a TMemberCallback member
function pointer.

For completeness sake, I have included a class specific FreeProcInstance()
function. In some cases, it might be necessary to use it. However, for a program which
registers only one or two callbacks during its lifetime, it may not need to be used. The
TMemberCallback class keeps track of all of the code stubs that have been created.
When the object is destroyed, it automatically gets rid of these code stubs and sends them
the way of the dodo. However, don't forget to unregister your callback functions
before program termination!!!!

Compiler Dependencies

This code was originally compiled under Borland C++ 3.1 for use with OWL.
However, I have tried to make it compatible with different compilers in mind. There
might be a couple of keywords that other compilers might choke on. One of them is the
CLASSDEF macro. It is an OWL thing which automatically creates typedefs for you to
reference your objects. For instance, if I create a class called OBJECT, it will
automatically create typedefs for me to address it using pointers and references by

4

creating a POBJECT and ROBJECT type respectively. This is easy to work around.
Simply declare the typedefs yourself (don't forget to make them far pointers and
references).

The only other thing that I can think of off of the top of my head is the
_EXPORT keyword in the class declaration of the TMemberCallback class. In OWL, it
expands to the type of memory model which is currently in use (far, huge, etc.).
However, you must always try to use far or huge since the this pointer must always be a
LONG pointer as noted previously.

Any Questions... Comments?

If you have any questions or comments, please feel free to contact me. I can be
reached via email at the following:

tnash@azariah.tamu.edu

If you like this utility and plan to use it a lot, please send $10 or what you consider a
reasonable donation for the many hours spent in front of a debugging monitor figuring
out the intricacies of this process. Please send donations to:

Trey Nash

5016 Forest Bend
Dallas, Texas 75244

Thank you for your support.

5

	Introduction
	What's Included
	How it Works
	How to Use the TMemberCallback Class
	Note: The pointer to the member function that the programmer wishes to use as a callback must be typecast into the corresponding pointer type. This is necessary in order to convert the pointer into a TMemberCallback member function pointer.

	Technical Aspects of the TMemberCallback Class
	Note: This function assumes that the hidden this pointer is a LONG pointer. This is usually nothing to worry about. However, if there is a compiler switch which forces the compiler to use LONG this pointers, I would suggest setting it accordingly.
	Note: Remember to typecast the member function pointer using one of the given typecasts in the header file. This is required in order to convert the pointer to a TMemberCallback member function pointer.

	Compiler Dependencies
	Any Questions... Comments?

